
NAG Fortran Library Routine Document

C06FPF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

C06FPF computes the discrete Fourier transforms of m sequences, each containing n real data values.
This routine is designed to be particularly efficient on vector processors.

2 Specification

SUBROUTINE C06FPF(M, N, X, INIT, TRIG, WORK, IFAIL)

INTEGER M, N, IFAIL
real X(M*N), TRIG(2*N), WORK(M*N)
CHARACTER*1 INIT

3 Description

Given m sequences of n real data values xp
j , for j ¼ 0; 1; . . . ; n� 1; p ¼ 1; 2; . . . ;m, this routine

simultaneously calculates the Fourier transforms of all the sequences defined by:

ẑzpk ¼
1ffiffiffi
n

p
Xn�1

j¼0

xp
j � exp �i

2�jk

n

� �
; k ¼ 0; 1; . . . ; n� 1; p ¼ 1; 2; . . . ;m:

(Note the scale factor 1ffiffi
n

p in this definition.)

The transformed values ẑzpk are complex, but for each value of p the ẑzpk form a Hermitian sequence (i.e.,

ẑzpn�k is the complex conjugate of ẑzpk), so they are completely determined by mn real numbers (see also the

C06 Chapter Introduction).

The discrete Fourier transform is sometimes defined using a positive sign in the exponential term:

ẑzpk ¼
1ffiffiffi
n

p
Xn�1

j¼0

xpj � exp þi
2�jk

n

� �
:

To compute this form, this routine should be followed by a call to C06GQF to form the complex

conjugates of the ẑzpk.

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham (1974)) known as the
Stockham self-sorting algorithm, which is described in Temperton (1983a). Special coding is provided for
the factors 2, 3, 4, 5 and 6. This routine is designed to be particularly efficient on vector processors, and it
becomes especially fast as M, the number of transforms to be computed in parallel, increases.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice-Hall

Temperton C (1983a) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350

5 Parameters

1: M – INTEGER Input

On entry: the number of sequences to be transformed, m.

Constraint: M � 1.

C06 – Summation of Series C06FPF

[NP3546/20A] C06FPF.1



2: N – INTEGER Input

On entry: the number of real values in each sequence, n.

Constraint: N � 1.

3: X(M*N) – real array Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension
ð1 : M; 0 : N� 1Þ; each of the m sequences is stored in a row of the array. In other words, if the

data values of the pth sequence to be transformed are denoted by xp
j, for j ¼ 0; 1; . . . ; n� 1, then

the mn elements of the array X must contain the values

x1
0; x

2
0; . . . ; x

m
0 ; x

1
1; x

2
1; . . . ; x

m
1 ; . . . ; x

1
n�1; x

2
n�1; . . . ; x

m
n�1:

On exit: the m discrete Fourier transforms stored as if in a two-dimensional array of dimension
ð1 : M; 0 : N� 1Þ. Each of the m transforms is stored in a row of the array in Hermitian form,
overwriting the corresponding original sequence. If the n components of the discrete Fourier

transform ẑzpk are written as apk þ ibpk, then for 0 � k � n=2, apk is contained in Xðp; kÞ, and for

1 � k � ðn� 1Þ=2, bpk is contained in Xðp; n� kÞ. (See also Section 2.1.2 of the C06 Chapter

Introduction.)

4: INIT – CHARACTER*1 Input

On entry: if the trigonometric coefficients required to compute the transforms are to be calculated by
the routine and stored in the array TRIG, then INIT must be set equal to ’I’ (Initial call).

If INIT contains ’S’ (Subsequent call), then the routine assumes that trigonometric coefficients for
the specified value of n are supplied in the array TRIG, having been calculated in a previous call to
one of C06FPF, C06FQF or C06FRF.

If INIT contains ’R’ (Restart) then the routine assumes that trigonometric coefficients for the
particular value of n are supplied in the array TRIG, but does not check that C06FPF, C06FQF or
C06FRF have previously been called. This option allows the TRIG array to be stored in an external
file, read in and re-used without the need for a call with INIT equal to ’I’. The routine carries out a
simple test to check that the current value of n is consistent with the array TRIG.

Constraint: INIT ¼ ’I’; ’S’ or ’R’.

5: TRIG(2*N) – real array Input/Output

On entry: if INIT ¼ ’S’ or ’R’, TRIG must contain the required coefficients calculated in a previous
call of the routine. Otherwise TRIG need not be set.

On exit: TRIG contains the required coefficients (computed by the routine if INIT ¼ ’I’).

6: WORK(M*N) – real array Workspace

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

C06FPF NAG Fortran Library Manual

C06FPF.2 [NP3546/20A]



6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, M < 1.

IFAIL ¼ 2

N < 1.

IFAIL ¼ 3

INIT is not one of ’I’, ’S’ or ’R’.

IFAIL ¼ 4

INIT ¼ ’S’, but none of C06FPF, C06FQF or C06FRF have previously been called.

IFAIL ¼ 5

INIT ¼ ’S’ or ’R’, but the array TRIG and the current value of N are inconsistent.

IFAIL ¼ 6

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing
the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to nm� logn, but also depends on the factors
of n. The routine is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a
large prime, or has large prime factors.

9 Example

This program reads in sequences of real data values and prints their discrete Fourier transforms (as
computed by C06FPF). The Fourier transforms are expanded into full complex form using C06GSF and
printed. Inverse transforms are then calculated by calling C06GQF followed by C06FQF showing that the
original sequences are restored.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* C06FPF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER MMAX, NMAX
PARAMETER (MMAX=5,NMAX=20)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..
INTEGER I, IFAIL, J, M, N

* .. Local Arrays ..
real TRIG(2*NMAX), U(NMAX*MMAX), V(NMAX*MMAX),

C06 – Summation of Series C06FPF

[NP3546/20A] C06FPF.3



+ WORK(2*MMAX*NMAX), X(NMAX*MMAX)
* .. External Subroutines ..

EXTERNAL C06FPF, C06FQF, C06GQF, C06GSF
* .. Executable Statements ..

WRITE (NOUT,*) ’C06FPF Example Program Results’
* Skip heading in data file

READ (NIN,*)
20 READ (NIN,*,END=140) M, N

IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
DO 40 J = 1, M

READ (NIN,*) (X(I*M+J),I=0,N-1)
40 CONTINUE

WRITE (NOUT,*)
WRITE (NOUT,*) ’Original data values’
WRITE (NOUT,*)
DO 60 J = 1, M

WRITE (NOUT,99999) ’ ’, (X(I*M+J),I=0,N-1)
60 CONTINUE

IFAIL = 0
*

CALL C06FPF(M,N,X,’Initial’,TRIG,WORK,IFAIL)
*

WRITE (NOUT,*)
WRITE (NOUT,*)

+ ’Discrete Fourier transforms in Hermitian format’
WRITE (NOUT,*)
DO 80 J = 1, M

WRITE (NOUT,99999) ’ ’, (X(I*M+J),I=0,N-1)
80 CONTINUE

WRITE (NOUT,*)
WRITE (NOUT,*) ’Fourier transforms in full complex form’

*
CALL C06GSF(M,N,X,U,V,IFAIL)

*
DO 100 J = 1, M

WRITE (NOUT,*)
WRITE (NOUT,99999) ’Real ’, (U(I*M+J),I=0,N-1)
WRITE (NOUT,99999) ’Imag ’, (V(I*M+J),I=0,N-1)

100 CONTINUE
*

CALL C06GQF(M,N,X,IFAIL)
CALL C06FQF(M,N,X,’Subsequent’,TRIG,WORK,IFAIL)

*
WRITE (NOUT,*)
WRITE (NOUT,*) ’Original data as restored by inverse transform’
WRITE (NOUT,*)
DO 120 J = 1, M

WRITE (NOUT,99999) ’ ’, (X(I*M+J),I=0,N-1)
120 CONTINUE

GO TO 20
ELSE

WRITE (NOUT,*) ’Invalid value of M or N’
END IF

140 STOP
*
99999 FORMAT (1X,A,6F10.4)

END

9.2 Program Data

C06FPF Example Program Data
3 6
0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815

9.3 Program Results

C06FPF Example Program Results

C06FPF NAG Fortran Library Manual

C06FPF.4 [NP3546/20A]



Original data values

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815

Discrete Fourier transforms in Hermitian format

1.0737 -0.1041 0.1126 -0.1467 -0.3738 -0.0044
1.3961 -0.0365 0.0780 -0.1521 -0.0607 0.4666
1.1237 0.0914 0.3936 0.1530 0.3458 -0.0508

Fourier transforms in full complex form

Real 1.0737 -0.1041 0.1126 -0.1467 0.1126 -0.1041
Imag 0.0000 -0.0044 -0.3738 0.0000 0.3738 0.0044

Real 1.3961 -0.0365 0.0780 -0.1521 0.0780 -0.0365
Imag 0.0000 0.4666 -0.0607 0.0000 0.0607 -0.4666

Real 1.1237 0.0914 0.3936 0.1530 0.3936 0.0914
Imag 0.0000 -0.0508 0.3458 0.0000 -0.3458 0.0508

Original data as restored by inverse transform

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815

C06 – Summation of Series C06FPF

[NP3546/20A] C06FPF.5 (last)


	C06FPF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	M
	N
	X
	INIT
	TRIG
	WORK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5
	IFAIL = 6

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results


	NAG Library Manual, Mark 21
	Foreword
	Introduction
	Essential Introduction - essential reading for all users
	NAG Fortran Library specific documentation
	Mark 21 News

	NAG SMP Library specific documentation
	SMP Introduction - essential reading for all SMP users
	Mark 21 News - SMP Library
	SMP Tuned and Enhanced Routines

	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction



